Dual role of the plastid terminal oxidase in tomato.

نویسندگان

  • Maryam Shahbazi
  • Matthias Gilbert
  • Anne-Marie Labouré
  • Marcel Kuntz
چکیده

The plastid terminal oxidase (PTOX) is a plastoquinol oxidase whose absence in tomato (Solanum lycopersicum) results in the ghost (gh) phenotype characterized by variegated leaves (with green and bleached sectors) and by carotenoid-deficient ripe fruit. We show that PTOX deficiency leads to photobleaching in cotyledons exposed to high light primarily as a consequence of reduced ability to synthesize carotenoids in the gh mutant, which is consistent with the known role of PTOX as a phytoene desaturase cofactor. In contrast, when entirely green adult leaves from gh were produced and submitted to photobleaching high light conditions, no evidence for a deficiency in carotenoid biosynthesis was obtained. Rather, consistent evidence indicates that the absence of PTOX renders the tomato leaf photosynthetic apparatus more sensitive to light via a disturbance of the plastoquinone redox status. Although gh fruit are normally bleached (most likely as a consequence of a deficiency in carotenoid biosynthesis at an early developmental stage), green adult fruit could be obtained and submitted to photobleaching high light conditions. Again, our data suggest a role of PTOX in the regulation of photosynthetic electron transport in adult green fruit, rather than a role principally devoted to carotenoid biosynthesis. In contrast, ripening fruit are primarily dependent on PTOX and on plastid integrity for carotenoid desaturation. In summary, our data show a dual role for PTOX. Its activity is necessary for efficient carotenoid desaturation in some organs at some developmental stages, but not all, suggesting the existence of a PTOX-independent pathway for plastoquinol reoxidation in association with phytoene desaturase. As a second role, PTOX is implicated in a chlororespiratory mechanism in green tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of carotenoid content, gene expression and enzyme levels in tomato (Lycopersicon esculentum) leaves.

Physiological conditions which lead to changes in total carotenoid content in tomato plantlets were identified. Carotenoid levels were found to increase after the onset of a dark period during a normal 24 h cycle. This rapid initial increase is followed by a steady decrease in carotenoid content throughout the night. A decrease in the expression of several carotenogenic genes, namely pds, zds (...

متن کامل

The Dual Role of the Plastid Terminal Oxidase PTOX: Between a Protective and a Pro-oxidant Function

Citation: Krieger-Liszkay A and Feilke K (2016) The Dual Role of the Plastid Terminal Oxidase PTOX: Between a Protective and a Pro-oxidant Function. The plastid terminal oxidase (PTOX) is a non-heme diiron quinol oxidase that oxidizes plastoquinol and reduced O 2 to H 2 O. PTOX was discovered in the so-called immutans mutant of A. thaliana showing a variegated phenotype (Wetzel et al., 1994; Ca...

متن کامل

Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte thellungiella: role of the plastid terminal oxidase as an alternative electron sink.

The effects of short-term salt stress on gas exchange and the regulation of photosynthetic electron transport were examined in Arabidopsis (Arabidopsis thaliana) and its salt-tolerant close relative Thellungiella (Thellungiella halophila). Plants cultivated on soil were challenged for 2 weeks with NaCl. Arabidopsis showed a much higher sensitivity to salt than Thellungiella; while Arabidopsis p...

متن کامل

Water stress enhances expression of genes encoding plastid terminal oxidase and key components of chlororespiration and alternative respiration in soybean seedlings.

Plastid terminal oxidase (PTOX) is a plastid-localized plastoquinone (PQ) oxidase in plants. It functions as the terminal oxidase of chlororespiration, and has the potential ability to regulate the redox state of the PQ pool. Expression of the PTOX gene was up-regulated in soybean seedlings after exposure to water deficit stress for 6 h. Concomitantly expression of the NDH-H gene, encoding a co...

متن کامل

Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes

Ascorbic acid (vitamin C) is an enzyme co-factor in eukaryotes that also plays a critical role in protecting photosynthetic eukaryotes against damaging reactive oxygen species derived from the chloroplast. Many animal lineages, including primates, have become ascorbate auxotrophs due to the loss of the terminal enzyme in their biosynthetic pathway, L-gulonolactone oxidase (GULO). The alternativ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 145 3  شماره 

صفحات  -

تاریخ انتشار 2007